ISSN-L: 0798-1015   •   eISSN: 2739-0071 (En línea)


logo


Vol. 43 (Nº 07) Año 2022. Art. 3


Recibido/Received: 03/05/2022 • Aprobado/Approuved: 01/07/2022 • Publicado/Published: 15/07/2022
DOI: 10.48082/espacios-a22v43n07p03

Granger causality procedeture to diagnosis and failture in industrial systems

Procedimiento de causalidad de Granger para diagnóstico y localización de fallas en sistemas industriales  

BECERRA-ANGARITA, Oscar F. 1
ALVAREZ-PIZARRO, Yuli A. 2

Abstract
Industrial process supervision is an important subject nowdays due to the increased requirement for safer processes for operators and effective for companies. Control loops affected by disturbs, are grouped with PCA, based on their increased variability and the causal relationships between them are detected via Granger causality. A graph drawing algorithm allows indicating the source of the disturbance. The procedure is applied to data from a simulated chemical process CSTR. The proposed procedeture correctly indicated the sources of disturbances.
Key words: fault diagnosis, Granger causality, system identification

Resumen
La supervisión de procesos industriales es un tema importante en la actualidad debido a la creciente necesidad de procesos más seguros para los operadores y efectivos para las empresas. Los lazos de control afectados por perturbaciones se agrupan con PCA, en función de su mayor variabilidad y las relaciones causales entre ellos se detectan mediante la causalidad de Granger. Un algoritmo de dibujo de gráficos permite indicar la fuente de la perturbación. El procedimiento se aplica a datos de un proceso químico simulado CSTR. El procedimiento propuesto indicaba correctamente las fuentes de perturbaciones.
Palabras clave: diagnóstico de fallas, causalidad de Granger, identificación del sistemas

ARTÍCULO COMPLETO/FULL ARTICLE

PDF HTML

References

Aguirre, L. A. (2004). Introdução à identificação de sistemas–Técnicas lineares e não-lineares aplicadas a sistemas reais. Editora UFMG. https://doi.org/10.13140/RG.2.1.1616.7925

Alauddin, M., Khan, F., Imtiaz, S., & Ahmed, S. (2018). A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems. Industrial & Engineering Chemistry Research57(32), 10719-10735. https://doi.org/10.1021/acs.iecr.8b00936

Balcilar, M., Ike, G., & Gupta, R. (2022). The role of economic policy uncertainty in predicting output growth in emerging markets: a mixed-frequency granger causality approach. Emerging Markets Finance and Trade58(4), 1008-1026.

Barnett, L., & Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. Journal of neuroscience methods223, 50-68. https://doi.org/10.1016/j.jneumeth.2013.10.018

Chiang, L. H., Russell, E. L., & Braatz, R. D. (2001). Fault detection and diagnosis in industrial systems. https://doi.org/10.1088/0957-0233/12/10/706

Finch, F. E. (1989). Automated fault diagnosis of chemical process plants using model-based reasoning (Doctoral dissertation, Massachusetts Institute of Technology). Available: http://hdl.handle.net/1721.1/14194

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 424-438. https://doi.org/10.2307/1912791

He, Z., Shardt, Y. A., Wang, D., Hou, B., Zhou, H., & Wang, J. (2018). An incipient fault detection approach via detrending and denoising. Control Engineering Practice74, 1-12. https://doi.org/10.1016/j.conengprac.2018.02.005

Huang, H. B., Yi, T. H., & Li, H. N. (2017). Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach. Journal of Aerospace Engineering30(2), B4015003. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000572

Joe Qin, S. (2003). Statistical process monitoring: basics and beyond. Journal of Chemometrics: A Journal of the Chemometrics Society17(8‐9), 480-502. https://doi.org/10.1002/cem.800

Kirilova, E. G. (2022). Artificial Neural Networks: Applications in Chemical Engineering. In Modeling and Simulation in Chemical Engineering (pp. 127-146). Springer, Cham. https://doi.org/10.1007/978-3-030-87660-9_6

Kruger, U., & Xie, L. (2012). Statistical monitoring of complex multivatiate processes: with applications in industrial process control. John Wiley & Sons. https://www.wiley.com/en-sg/Statistical+Monitoring+of+Complex+Multivatiate+Processes:+With+Applications+in+Industrial+Process+Control-p-9780470517246

Lindner, B., Auret, L., Bauer, M., & Groenewald, J. W. (2019). Comparative analysis of Granger causality and transfer entropy to present a decision flow for the application of oscillation diagnosis. Journal of Process Control79, 72-84. https://doi.org/10.1016/j.jprocont.2019.04.005

Lindner, B., Auret, L., Bauer, M., & Groenewald, J. W. (2019). Comparative analysis of Granger causality and transfer entropy to present a decision flow for the application of oscillation diagnosis. Journal of Process Control79, 72-84. https://doi.org/10.1016/j.jprocont.2019.04.005

Ljung, L. (1998). System identification. Wiley encyclopedia of electrical and electronics engineering, 1-19.  https://doi.org/10.1002/047134608X.W1046.pub2

Lucke, M., Chioua, M., & Thornhill, N. F. (2022). From oscillatory to non-oscillatory disturbances: A comparative review of root cause analysis methods. Journal of Process Control113, 42-67. https://doi.org/10.1016/j.jprocont.2022.03.004

Marques, V. M., Munaro, C. J., & Shah, S. L. (2015). Detection of causal relationships based on residual analysis. IEEE Transactions on Automation Science and Engineering12(4), 1525-1534. https://doi.org/10.1109/TASE.2015.2435897

Nor, N. M., Hassan, C. R. C., & Hussain, M. A. (2020). A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Reviews in Chemical Engineering36(4), 513-553. https://doi.org/10.1515/revce-2017-0069

Nwani, S. E. (2022). Air pollution trajectories and life expectancy in Nigeria. International Journal of Social Economics. https://doi.org/10.1108/IJSE-06-2021-0351

Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. Journal of neuroscience methods186(2), 262-273. https://doi.org/10.1016/j.jneumeth.2009.11.020

Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience35(8), 3293-3297. https://doi.org/10.1523/JNEUROSCI.4399-14.2015

Shojaie, A., & Fox, E. B. (2022). Granger causality: A review and recent advances. Annual Review of Statistics and Its Application9, 289-319. https://doi.org/10.1146/annurev-statistics-040120-010930

Wiener, N., & Masani, P. (1957). The prediction theory of multivariate stochastic processes. Acta Mathematica98(1-4), 111-150. https://doi.org/10.1007/BF02404472

Yi, T. H., Huang, H. B., & Li, H. N. (2017). Development of sensor validation methodologies for structural health monitoring: A comprehensive review. Measurement109, 200-214. https://doi.org/10.1016/j.measurement.2017.05.064

Yong, G., Xin, W., & Zhenlei, W. (2015). Fault detection for a class of industrial processes based on recursive multiple models. Neurocomputing169, 430-438. https://doi.org/10.1016/j.neucom.2014.08.107


1. Docente investigador. Ingenieria electrónica . Universidad de Investigación y Desarrollo - UDI. Colombia. obecerra2@udi.edu.co

2. Docente. Ingenieria de telecomunicaciones. Universidad Santo Tomás. Colombia. yuli.alvarez01@ustabuca.edu.co


Revista ESPACIOS
ISSN-L: 0798-1015 |  eISSN: 2739-0071 (En línea)
Vol. 43 (Nº 07) Año 2022

[INDICE]

[WEBMASTER]

Desarrollada por .com

revistaespacios.com

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons
Reconocimiento-NoComercial 4.0 Internacional