ISSN-L: 0798-1015 • eISSN: 2739-0071 (En línea) - Revista Espacios – Vol. 43, Nº 07, Año 2022
BECERRA-ANGARITA O.F. & ALVAREZ-PIZARRO Y.A. «Granger causality procedeture to diagnosis and failture
in industrial systems»
Alauddin, M., Khan, F., Imtiaz, S., & Ahmed, S. (2018). A bibliometric review and analysis of data-driven fault
detection and diagnosis methods for process systems. Industrial & Engineering Chemistry
Research, 57(32), 10719-10735. https://doi.org/10.1021/acs.iecr.8b00936
Balcilar, M., Ike, G., & Gupta, R. (2022). The role of economic policy uncertainty in predicting output growth in
emerging markets: a mixed-frequency granger causality approach. Emerging Markets Finance and
Trade, 58(4), 1008-1026.
Barnett, L., & Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: a new approach to Granger-
causal inference. Journal of neuroscience methods, 223, 50-68.
https://doi.org/10.1016/j.jneumeth.2013.10.018
Chiang, L. H., Russell, E. L., & Braatz, R. D. (2001). Fault detection and diagnosis in industrial systems.
https://doi.org/10.1088/0957-0233/12/10/706
Finch, F. E. (1989). Automated fault diagnosis of chemical process plants using model-based
reasoning (Doctoral dissertation, Massachusetts Institute of Technology). Available:
http://hdl.handle.net/1721.1/14194
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral
methods. Econometrica: journal of the Econometric Society, 424-438. https://doi.org/10.2307/1912791
He, Z., Shardt, Y. A., Wang, D., Hou, B., Zhou, H., & Wang, J. (2018). An incipient fault detection approach via
detrending and denoising. Control Engineering Practice, 74, 1-12.
https://doi.org/10.1016/j.conengprac.2018.02.005
Huang, H. B., Yi, T. H., & Li, H. N. (2017). Sensor fault diagnosis for structural health monitoring based on
statistical hypothesis test and missing variable approach. Journal of Aerospace Engineering, 30(2),
B4015003. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000572
Joe Qin, S. (2003). Statistical process monitoring: basics and beyond. Journal of Chemometrics: A Journal of the
Chemometrics Society, 17(8-9), 480-502. https://doi.org/10.1002/cem.800
Kirilova, E. G. (2022). Artificial Neural Networks: Applications in Chemical Engineering. In Modeling and
Simulation in Chemical Engineering (pp. 127-146). Springer, Cham. https://doi.org/10.1007/978-3-030-
87660-9_6
Kruger, U., & Xie, L. (2012). Statistical monitoring of complex multivatiate processes: with applications in
industrial process control. John Wiley & Sons. https://www.wiley.com/en-
sg/Statistical+Monitoring+of+Complex+Multivatiate+Processes:+With+Applications+in+Industrial+Process
+Control-p-9780470517246
Lindner, B., Auret, L., Bauer, M., & Groenewald, J. W. (2019). Comparative analysis of Granger causality and
transfer entropy to present a decision flow for the application of oscillation diagnosis. Journal of Process
Control, 79, 72-84. https://doi.org/10.1016/j.jprocont.2019.04.005
Lindner, B., Auret, L., Bauer, M., & Groenewald, J. W. (2019). Comparative analysis of Granger causality and
transfer entropy to present a decision flow for the application of oscillation diagnosis. Journal of Process
Control, 79, 72-84. https://doi.org/10.1016/j.jprocont.2019.04.005
Ljung, L. (1998). System identification. Wiley encyclopedia of electrical and electronics engineering, 1-
19. https://doi.org/10.1002/047134608X.W1046.pub2