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Abstract  
Research into engineering and technology, as in other areas of knowledge, presents common issues when it is 
required to allocate an insufficient number of resources in the most optimal manner possible; in the case of this 
research paper this means assigning a greater number of satellites to a lesser number of ground stations, 
considering the input variables generated by the cost function. The Hungarian optimization algorithm constitutes 
an initial possible solution that can be applied to various cases. However, its approach and mathematical 
formulation leads to a non-square matrix of variables; therefore, it requires an adaption of the algorithm called 
the Adapted Hungarian Algorithm, making use of dummy variables. Thus, the objective of this study is to present 
an adaptation and formalization of the Hungarian algorithm for the case of non-square matrices, in the 
framework of the problems in allocating n satellites to m ground stations, with m<n. It is concluded that the 
formalization of the optimization structure of the Adapted Hungarian Algorithm generates plausible or coherent 
solutions to a cost function, facilitates its application and implementation to a wide range of situations and it can 
be executed through easy access software.  
Key words: autonomous agent, ground station network, hungarian algorithm.  
 
Resumen 
En este artículo, presentamos los resultados del proceso de asignación de recursos en redes de estaciones 
terrestres para el seguimiento y control de satélites. El sistema autónomo y dinámico para estaciones terrestres 
(ADSGS por sus siglas en ingles), requiere asignar los recursos de las estaciones terrenas a los satélites que hacen 
un paso sobre ellos en un tiempo específico, esto último solo ocurre durante un tiempo promedio de 7 a 8 
minutos y una estación terrena puede unicamente asistir a un satélite en ese momento, aquí está en problema. 
¿Qué hacer con los otros satélites que están pasando en ese momento en la estación terrestre y, sobre todo, a 
qué satélite asistir? Para el desarrollo de ADSGS, se utilizaron técnicas de inteligencia artificial, una red de 
estaciones terrestres experimentales SATNet, un agente inteligente que utiliza el algoritmo húngaro para 
optimizar la asignación de satélites a estaciones terrenas y el software de seguimiento. Para resolver el problema 
planteado, se sugirió la creación de un agente autónomo para realizar esta tarea y, junto con el algoritmo 
húngaro, optimizar la asignación de recursos, además, el modelo matemático que conduce a la solución de la 
propuesta. Finalmente, se desarrollan las ecuaciones que conducen al desarrollo de dicho modelo matemático y 
se muestran las variables se pueden adaptar y usar para cualquier escenario donde hay n número de satélites y 
m número de estaciones. 
Palabras clave: agente autónomo, algoritmo hungariano, redes de estaciones terrenas. 
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1. Introduction  

Research in spatial engineering and technology is increasingly complex. This study presents a common problem 
which arises when allocating the existing software and hardware resources between ground stations and 
satellites. 

There are various considerations for this problem. For example: a ground station can only serve a single satellite 
at a given moment; there are less ground stations than satellites; each mission of the satellite has a unique 
configuration regarding its frequency band, modulation scheme, proximity, visibility and priority, among other 
variables. 

The aim of this research work is the optimization of the allocation process of said resources through the 
Hungarian algorithm, taking into consideration established variables as a basis to design an autonomous agent 
capable of allocating a satellite to a ground station in a time t. 

For its development, different concepts were taken into consideration, such as autonomous agents, ground 
station networks, satellite tracking and control, band frequencies necessary to define a satellite link, and the 
Hungarian algorithm created by Harold W. Kuhn in 1955, framed within a mathematical model.   

Throughout this article there are conceptual references, the methodology used to develop this research work, 
the results obtained and, finally the conclusions derived from this investigation. 

2. Theoretical Analysis 

In this section the concepts used for the development of this work are defined: ADSGS, Autonomous Agent, 
Hungarian Algorithm, similarly,  the problem to be solved is formulated and possible situations or scenarios are 
raised  in which they worked. 

2.1. ADSGS – Autonomous and dynamic system for ground stations 
According to (Espindola, 2017), the Autonomous and Dynamic System for Ground Stations (ADSGS) is the solution 
for the tracking and control of satellites, which includes a configuration of hardware (antennas, radios, 
controllers, amplifiers, etc.), and of software necessary for the system to predict orbits and track satellites, carry 
out satellite links, send telecommands and receive the telemetries of the satellite. ADSGS uses a System Based 
Ruler (SBR) as an artificial intelligence technique, innovates in the way of implementing Software Defined Radio 
(SDR), based on an experimental network of SATNet ground stations to complete the autonomous and dynamic 
systems. The proposal developed in 2017 by (Espindola, 2017) was sponsored by the Universidad Pedagógica y 
Tecnológica de Colombia through the research INFELCOM and GAMMA, as part of a doctoral thesis. 

ADSGS then becomes a middleware between SATNet and the hardware configuration of the ground station. 
Figure 1 shows this architecture. 
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Figure 1 
ADSGS architecture 

 

Source:  (Espindola, 2017) 

2.2. Autonomous agent 
The creation of an autonomous agent allows for the solving of various problems. (Arens, 1994) Take an initial 
scenario; in this case, three stations and five satellites are used. Each satellite has several variables, which will be 
analyzed in order to make decisions when allocating resources in an optimal manner.  

Figure 2 describes the behavior of the ADSGS agent in a scenario where there are 3 satellites and 5 stations, the 
agent must determine the optimal way of allocating resources, these are matching a satellite to a station. 

Figure 2 
ADSGS autonomous agent 

 

 
Source: (Espindola, 2017) 
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In order to achieve the optimal allocation, ADSGS agent will follow the next five steps: 

1. Initial scenario features three satellites in Low Earth Orbit (LEO), orbit and stations located around the 
Earth.  

2. Each satellite has its own characteristics defined in the Flight Operational Plan supplied by the SATNet 
database which in turn, is evaluated by the rule-based expert system created for this purpose. Some of 
these variables are: visibility from each station, whether it requires S-band for telemetry, type of 
communication scheme (e.g. QPSK), proximity from the satellite to the ground station and the priority it 
has. 

3. As a result of this analysis, a matrix. This case provides a 3x5 matrix, but running the AHA requires a 
square matrix, so in order to convert it into a square one an adaptation is made by adding high values 
(100 for example) in the values that will never be reached or that have no values, such as the absence of 
ground stations 4 and 5. To create this new matrix the agent is based on previous decisions made using 
the rule-based expert system. 

4. The Hungarian Algorithm, created in 1955 (Kuhn, 1955), in this thesis it is proposed to make a 
modification, the adaptation of this algorithm will allow the development of the ADSGS agent part of this 
proposal. The AHA, is executed. This algorithm optimizes the resources allocation and allows the ADSGS 
agent to make the best decision. 

5. Finally, a table is obtained in which a satellite is assigned to each ground station, complying with the 
considerations and requirements of the proposed scenario. 

2.3. Hungarian algorithm 
The Hungarian method, created by Hungarian mathematician Harold W. Kuhn, is formally a multi-step procedure 
for applying its theorem given a cost-matrix of order n and obtaining another matrix with nonnegative entries 
containing an assignment consisting entirely of zeros. (Kuhn, 1955) 

A classical problem solved by the Hungarian algorithm is the one when it is necessary to assign many jobs to 
many workers where it is required to optimize the minimum time to accomplish the job. Figure 3 shows the 
depicted situation. The solution of the problem consists of optimizing the time so that only one worker can do 
one job, but which one? 

Figure 3 
A classical problem solved by  
the Hungarian Algorithm 

 
Source:  (Espindola, 2017) 
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This problem uses a Hungarian Algorithm where the following theorem is proposed: if a number is added to or 
subtracted from all entries in a row or column of a cost matrix, then an optimal assignment of tasks to the 
resulting cost-matrix is also an optimal task assignment for the original cost matrix (which is built from supply 
variables). 

The target function to be optimized, according to the structure of the Hungarian method, is given by the Eq. 1 
and Eq. 2: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒		𝑪𝑿     (1) 

𝑈𝑛𝑑𝑒𝑟	𝑡ℎ𝑒	𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛					𝑨𝑿 = 𝟏  (2) 

Where: 

C, corresponds to an n´n matrix, of costs generated or caused when job Wk is carried out by worker Jh.   

X, is the matrix of variables n´n, the components of which may take the value one or zero, whether the 
job Wk is assigned or not to worker Jh. 

A, is a unitary matrix n´n, with value 1 in each of its components.  

1, is an n´1 vector, the components of which are 1. 

2.4. Problem formulation 
Problematic situations that take place throughout the allocation of a satellite (job) which is orbiting in the space 
of a ground station (worker) take into account several aspects:   

- There are many satellites, all of them different, with different missions and devices that present different 
characteristics. 
 

- There are many ground stations located in different parts in the world, each one with different devices 
and characteristics. 
 

- There are more satellites (n) than ground stations (m), thus m < n. According to the latest data by NASA 
(Satre, 2019) and Online Satellite Calculations (NASA, 2019), at present, there are close to 3500 artificial 
satellites working and approximately 1000 ground stations. 
 

- There is no control over the exact time that a satellite passes over a station, although we do know the 
exact time, the minute and even the second in which the satellite is going to pass by the ground station.  
 

- A ground station can only attend to a single satellite at a given time. In a short period, it has to be decided 
which satellite is going to be attended to, even more so when two or more satellites pass over a ground 
station simultaneously. 

2.5. Possible situations 
1. When there is only one satellite (S) and only one ground station (GS), n = m = 1. In this case, there is no 

problem: the ground station is allocated to that satellite. (See Fig. 4)  
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Figure 4 
n=1 satellite, m=1 ground station   

 
Source:  (Espindola, 2017) 

2. When there are n satellites and m ground stations with m ³ n.  (See Fig. 5).  In this case, there is no 
problem as the number of ground stations is higher than the number of satellites, ensuring that each 
satellite will be attended to.  

Figure 5 
n=3 satellites, m=5 ground stations 

 
Source:  (Espindola, 2017) 

3. Another situation is presented when there are n satellites and m ground stations with m £ n.  (See Fig. 
6). For example, satellite 1 (S1) can be allocated to any of the three stations (GS), whereas satellite 2 (S2) 
can only be allocated to either station GS1 or GS3. 
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Figure 6 
n=5 satellites, m=3 ground stations 

 
Source:  (Espindola, 2017) 

In the previous cases, the most complex situation, when it comes to allocation problems, is case 3, given that 
some satellites would not be attended to when passing over the ground station. This is because the station can 
only attend to one satellite at a time. Therefore, this research work approaches this case of greater complexity, 
presenting a solution. 

Although there are various optimization methods to solve (1), a recurrent one is the Hungarian method, used to 
solve transport allocation problems due to the high number of variables and elements that can be included in 
the problem (A. Ramos, 2010) (Revenga, 2008). This method continues to be cited in different publications in the 
academic and research world, as can be seen in Fig. 7. It shows the existing scientific collaboration among 
countries regarding the topic. This was done taking as a basis the study of 48 articles published in journals visible 
in Web of Science -WoS in the period 2009 to 2018. (Rodríguez, Cely, & Gómez, 2018) 

 

 

 

 

 

 

 

 

 

 

 



 

Revista ESPACIOS. ISSN: 0798-1015  41(41)2020 

https://www.revistaespacios.com 273 

Figure 7 
Collaboration among countries. WoS Publications Hungarian Method 

 

 
Source:  (Rodríguez, Cely, & Gómez, 2018) 

In Fig. 7, the collaboration can be seen through a network structure with nodes and connection lines. The 
network structure implies that the greater the diameter of the circumference, the higher the number of 
publications in the country; and the thicker the line, the stronger the alliance due to the frequency of articles 
published (Jimenez, Gómez, & Rodríguez, 2019). Network structure applied in other areas, showing new 
dynamics of cooperation in the production of scientific knowledge (Gómez, Soto, & Lima, 2018) y  (Rodríguez, 
Gómez, & Herrera, 2017). 

3. Results 

Next, the mathematical model, the input variables, the cost matrix, and finally the representation of the solution 
for the resource allocation problem are shown. In this case it allows us to define which satellite will be served by 
the ground station through which it is passing at that instant of time. 

3.1.  Mathematical model 
The optimization process is carried out through the Hungarian method, which needs to find a minimum 
associated cost; in this case, to the fact that ground station 𝐺𝑆! receives or attends to a satellite 𝑆". The algorithm 
requieres n ground stations and n satellites, with the aim of minimizing Eq. 1, that is to say the Eq. 3:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒		𝑪𝑿  (3) 

where 

C, corresponds to an n´n matrix of costs generated or caused when attending to satellite 𝑆", in the 
ground station 𝐺𝑆!.   

X is the n´n matrix of variables, the components of which can take a value one or zero, whether   satellite 
k  is allocated to ground station h or not. 

The Eq. 3 has restrictions according to Eq. 2.  
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3.2. Supply Variables 
Given a ground station and in order to decide what satellite to attend to, the variables that define the problem 
have to be taken into consideration. Some are variables of the satellite; others are of the ground station. With 
the aim of weighing up the allocation, certain criteria are established, which generate a matrix of supply variables 
(V). 

Table 1 contains the supply variables: considering 1 satellite, h ground stations and p supply variables. 

Table 1 
Supply variables, for m ground stations, 1 satellite 

 Satellite 1 (S1)  
GS\Variables V1 V2 … VP TOTAL 

GS1 v111 v112 … v11p c11 
GS2 v211 v212 … v21p c21 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 
GSh vh11 vh12 … vh1p ch1 

 

Where vj1i, corresponds to the value (in this case it represents a cost) which takes the supply variable i-ésima, in 
the ground station j-ésima, for the satellite 𝑆#.  The value cj1=∑ 𝑣$#%

&
%'#   corresponds to the sum of the values of 

the supply variables in the j-ésima ground station, for satellite 𝑆#. 

3.3. Costs Matrix 
 

The table of costs is built from the table of supplies, where each cell (h, k) is obtained from the sum of the values 
that the supply variables take (vhki): h represents a ground station, k a satellite, and i a supply variable. The table 
of costs is presented in Table 2, in which the first column corresponds to the column headed TOTAL in/of Table 
1 with m=h. 

Table 2 
 Costs for m ground stations, n satellites and p variables 

 S1 S2 … Sn 

GS1 - c11=∑ 𝑣!!"
#
"$!  c12=∑ 𝑣!%"

#
"$!  … c1n=∑ 𝑣!&"

#
"$!  

GS2 c21=∑ 𝑣%!"
#
"$!  c22=∑ 𝑣%%"

#
"$!  … c2n=∑ 𝑣%&"

#
"$!  

⋮ ⋮ ⋮ ⋱ ⋮ 

GSm cm1=∑ 𝑣'!"
#
"$!  cm2=∑ 𝑣'%"

#
"$!  … cmn=∑ 𝑣'&"

#
"$!  

 

The previous table of costs is of an m´n type, being m < n. In order to implement the algorithm with the 
Hungarian method, it is necessary to build a square table of costs, of the type corresponding to the maximum 
between the number of stations and the number of satellites, corresponding AHA process, with a table of n´n 
type.  
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According to case 3, mentioned in the previous section, given that there are more satellites (S) than ground 
stations (GS), it will be necessary to add fictitious ground stations, such as 𝐺𝑆()#,  𝐺𝑆()*, …, 𝐺𝑆+ and are called 
dummy ground stations.  Thus, Table 2 acquires the structure of Table 3 (Table of costs). 

Table 3 
Table of costs, including dummy ground stations n-m 

 S1 S2 … Sn 

GS1 - c11=∑ 𝑣##%
&
%'#  c12=∑ 𝑣#*%

&
%'#  … c1n=∑ 𝑣#+%

&
%'#  

GS2 c21=∑ 𝑣*#%
&
%'#  c22=∑ 𝑣**%

&
%'#  … c2n=∑ 𝑣*+%

&
%'#  

⋮ ⋮ ⋮ ⋱ ⋮ 

GSm cm1=∑ 𝑣(#%
&
%'#  cm2=∑ 𝑣(*%

&
%'#  … cmn=∑ 𝑣(+%

&
%'#  

GSm+1 cm+1,1=∑ 𝑣(()#)#%
&
%'#  cm+1,2=∑ 𝑣(()#)*%

&
%'#  … cm+1,n=∑ 𝑣(()#)+%

&
%'#  

⋮ ⋮ ⋮ ⋱ ⋮ 

GSn cn1=∑ 𝑣+#%
&
%'#  cn2=∑ 𝑣+*%

&
%'#  … cnn=∑ 𝑣++%

&
%'#  

 

In order to implement the Hungarian method, the cells (h, k) of the dummy variables (being h = m+1, m+2, …, n  
and k = 1, 2, .., n); the cost 𝑐!" assigned to each cell of the table of costs, will take the following value (Eq. 4) 

 ℎ𝑘 = ∑ 2𝜔&
%'# = 2𝜔 ∗ 𝑝.    (4) 

Thus, in Table 3 costs will have to be built (n-m) ´n cells associated with dummy ground stations, with value 2ω 
* p.  Two is an arbitrary value and it is possible to use a higher number. 

Where ω, is a "high" value in comparison to the costs allocated to the cells of the non-dummy ground stations; 
the value of ω can also be used for cases in which the conditions established in the variables do not apply or no 
value can be established. This makes that the cells where the value of ω is allocated, by the Hungarian algorithm, 
have a lower priority to conform the optimal solution to the problem (3). 

Table 3 generates the costs matrix C of 𝑛 × 𝑛 type, defined in the allocation problem of the Eq. 3; that is to say  

 𝐶 = C
𝑐## ⋯ 𝑐#+
⋮ ⋱ ⋮
𝑐+# ⋮ 𝑐++

E  

Taking into account the Eq. 3, the allocation problem has n´n variables, which are represented by 𝑥!" and form 
the matrix X, where h represents the ground station and k represents the satellite. For the case of the Hungarian 
method see Eq. 5. 

 𝑥!" = G1 if		the	ground	station	GS!	is	assigned	to	satellite	S" 					
0 	if	the	ground	station	GS!	is	not	assigned	to	satellite	S"

   (5) 

Table 4 presents a structure of the table of variables of the allocation problem posed in the Eq. 3. These variables 
can take values 1 or 0. 

 

 

 



 

Revista ESPACIOS. ISSN: 0798-1015  41(41)2020 

https://www.revistaespacios.com 276 

Table 4 
Table of variables of the allocation problem 

 
 S1 S2 … Sn 

GS1 - x11 x12 … x1n 

GS2 x21 x22 … x2n 

⋮ ⋮ ⋮ ⋱ ⋮ 

GSn xn1 xn2 … xnn 

 

In the allocation problem, Table 4 allows for building the permutation matrix, which is a binary matrix of 𝑛 × 𝑛 
type, symbolized by 

𝑋 = C
𝑥## ⋯ 𝑥#+
⋮ ⋱ ⋮
𝑥+# ⋮ 𝑥++

E  

According to the Eq. 3, the function that has to be minimized is the following: 

min\\𝑐!"𝑥!"

+

"'#

+

!'#

 

Which is conditioned (Eq. 2) by the following restrictions: 

 

∑ 𝑥%& = 1'
&(% ,  ∑ 𝑥)& = 1'

&(% , … ∑ 𝑥'& = 1'
&(% , 

∑ 𝑥*% = 1'
*(% , ∑ 𝑥*) = 1'

*(% , … ∑ 𝑥*' = 1'
*(% . 

 

The solution to the previous allocation problem consists of establishing exactly 1 in some of the entries (cells) of 
each row and allocating exactly 1 to any of the entries (cells) of each column of the X matrix; that is to say, 
allocating a sole ground station to a single satellite. 

3.4. Representation of the Solution 
For the case of Fig. 6, where three ground stations are involved (m=3) and five satellites (n=5), a supply matrix is 
created, with five variables (p=5:VS, FR, MO, PX, PR), described below: 

- V1: Visibility (VS): from a ground station, visibility is 0 when it is 100% visible and 1 when it is definitely not 
visible. 
 

- V2: Frequency (FR): this is the signal in which the satellite will transmit or receive information from the 
station. This variable takes value 0 if there is compatibility of the type of frequency between the satellite 
and the ground station. For example, if the frequency is Ultra High Frequency (UHF), then FR=0, otherwise 
FR=1. 
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- V3: Modulation (MO): the modulation scheme is formed by the way which information is received, 
whether it is from the ground station or from the satellite. This variable takes a 0 value if there is 
compatibility of the modulation type between the satellite and the ground station. For example, if the 
modulation is QPSK then MO=0, otherwise MO=1. 

- V4: Proximity (PX): how close is the satellite from the ground station? If the signal (communication, 
telemetry or telecommand) between the satellite and the station is reachable and with less distance than 
to other satellites, then PX=0, otherwise PX=1. 

- V5: Priority (PR): when the owner of the satellite urgently requires to carry out a telemetry (receive 
information from the satellite) or a telecommand (send information to the satellite), they can change the 
priority. PR=0 if it is a maximum priority PR=1 if it is not a priority at the time. 

The number of supply variables (Vi) in a problem could be higher or lower than the one defined here. In addition, 
they can be of a different type and according to a fixed scale. 

In Table 5, the case of a satellite, 3 ground stations and 5 supply variables is exemplified. 

Table 5 
Table of variables of satellite 𝑆! 

GS\Variables 
Visibility 
(VS= V1) 

Frequency 
(FR= V2) 

Modulation 
(MO= V3) 

Proximity 
(PX= V4) 

Priority 
(PR= V5) 

TOTAL 
 

GS1 10 10 10 10 10 c11=50 
GS2 1 1 1 1 1 c21=5 
GS3 1 0 0 0 10 c31=11 

 

The supply variables can take the 𝜔 = 10 value or a higher value (see Eq. 4), when the conditions established in 
the description of the variables do not apply (0 or 1, depending on what was previously established), or it is not 
possible to establish a value for the variable. In the previous table, the values of the column headed TOTAL are 
the result of: 

Table 6 
Table of costs for satellite 𝑆! 

Station/Satellite S1 

GS1 c11=VS11+FR11+MO11+PX11+PR11 

GS2 c21=VS21+FR21+MO21+PX21+PR21 
GS3 c31=VS31+FR31+MO31+PX31+PR31 

 
The costs of the supply variables for the four satellites are indicated in Table 7. 

Table 7 
Table of variables: satellite supplies 2 to 5 

GS\ V1 V2 V3 V4 V5 TOTAL 

GS1 0 1 1 1 0 c12=3 

GS2 1 1 1 10 1 c22=14 

GS3 1 0 0 0 1 c32=2 

Satellite2 

GS\ V1 V2 3 V4 V5 TOTAL 

GS1 0 0 1 1 1 c13=3 

GS2 1 1 1 1 0 c23=4 

GS3 10 10 10 10 10 c33=50 

Satellite3 
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GS\ V1 V2 V3 V4 V5 TOTAL 

GS1 10 10 10 10 10 c14=50 

GS2 1 1 1 1 0 c24=4 

GS3 1 1 0 0 1 c34=3 

Satellite4 

GS\ V1 V2 V3 V4 V5 TOTAL 

GS1 1 1 1 1 1 c15=5 

GS2 1 1 1 1 10 c25=14 

GS3 1 0 0 0 10 c35=11 

Satellite5 

 

The associated costs (Table 8) are generated by replacing the values in Tables 5 and 7. 

Table 8 
Table of costs 

 S1 S2 S3 S4 S5 

GS1 - c11=50 - c12=3 - c13=3 - c14=50 - c15=5 

GS2 c21=5 c22=14 c23=4 c24=4 c25=14 

GS3 c31=11 c32=2 c33=50 c34=3 c35=11 

 

Based on the previous table, the costs matrix is generated, which has the following form: 

𝐶 = .
50 3 3 50 5
5 14 4 4 14
11 2 50 3 11

5 

Table 9 
Values: Table of costs before using the Hungarian algorithm 

 S1 S2 S3 S4 S5 
GS1 50 3 3 50 5 

GS2 5 14 4 4 14 
GS3 11 2 50 3 11 
GS4 100 100 100 100 100 
GS5 100 100 100 100 100 

 

After using the Hungarian algorithm, Table 10 is obtained, which shows the results of the allocation of satellites 
to the ground stations. 

Table 10 
Allocation results 

 S1 S2 S3 S4 S5 
GS1 - - X - - 

GS2 - - - X - 

GS3 - X - - - 

GS4 - - - - - 

GS5 - - - - - 

 

This means that the implementation of AHA for this optimization problem, which corresponds to the allocation 
of satellites to stations can be solved satisfactorily. Illustrating the case with five satellites and three stations, the 
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result is: satellite 2 will be served by station 3, satellite 3 by station 1, and satellite 4 by ground station 2, within 
a certain time (t).  

Optimize the use of different resources (software and hardware) used in ground station networks for satellite 
tracking and control, where definitely the amount of satellites, it will always be greater than that of ground 
stations, it allows to increase the reliability in the success of the mission. Similarly, it increases the development 
of this area of space technology, since it considerably reduces the operating costs of the space system. 

The use of a mathematical model strengthens and validates the research carried out to optimize the use of earth 
station networks used in satellite tracking and control. 

4. Conclusions 

The formalization of AHA's optimization structure to problems associated with the allocation of resources 
facilitates its application and expands the spectrum of situations to solve beyond what is represented by the 
issue with satellites and ground stations. 

The adaptation of the Hungarian Algorithm makes a contribution in the solution of problems of allocation since 
it allows the conversion of non-square matrices into square matrices, thus, adapting to the solution of more 
problems of this type. 

The proposed mathematical model, solve the problem of resource allocation in ground station networks and 
contributes to the development of space technology. 

It is expected that this model will be used in the development of the ground segment, and contribute to satellite 
tracking and control from ground stations and optimize this process. 
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